Locality and Iterativity in Jingulu Vowel Harmony

Rachel Walker University of Southern California

Iterativity in Grammar Workshop University of Leipzig December 2, 2019

Introduction

Iterativity

- In harmony systems, iterativity is often closely tied to locality and trigger-target relations
 - For example, in a string of multiple vowels that harmonize with a final vowel, the question arises as to what the trigger is for vowels at a distance from the final vowel. Two possibilities:
 - The trigger is always adjacent in the string, so that harmony is passed along in an iterative fashion.
 V V V V
 - VVV
 - The trigger is the **same** vowel for all segments, even if it is **non-adjacent**.

Introduction

2

4

Introduction

1

3

Jingulu height harmony

- · Height harmony in Jingulu engages these issues
 - Harmony in root vowels is initiated by a high suffix vowel.
 - However, high root vowels neither initiate nor transmit height harmony (Pensalfini 1997, 2002).
 - This pattern raises questions about trigger-target relations in the system, and whether harmony operates in a local, iterative fashion.

Introduction

Theoretical vantage point

- A positional licensing account is pursued (Walker 2005, 2011, Kaplan 2008a, b, 2011, 2015, Kalivoda 2012).
- Couched in an Agreement by Correspondence approach, where harmony is enforced over a chain of surface-corresponding vowels (Walker 2000a, b, 2001, Hansson 2001, 2010, Rose & Walker 2004).

Findings

- The analysis developed here shows that as a positional licensing phenomenon, Jingulu height harmony could be non-iterative.
- However, a requirement for a stable left anchor for the chain of surfacecorresponding vowels drives harmony to persist until it reaches either a faithful vowel or an initial vowel.
- Harmony within the surface correspondence chain can be enforced strictly over chain-adjacent pairs.

Introduction

Road map

5

7

- Introduce Jingulu height harmony pattern
- · Identify issues it raises involving iterativity and locality
- Develop positional-licensing analysis using ABC
- Stock-taking and discussion of alternatives.

Height harmony in Jingulu

Jingulu: A language of North-Central Australia

- Three vowel phonemes: /i, a, u/
- Vowel height harmony from a high suffix vowel raises $/a/ \rightarrow [i]$ in a root.
 - Operates from /i, u/ in certain suffixes, usually unstressed
 - Harmony affects unbounded sequences of /a/ in a root (raised Vs are underlined).
 - Grammatical description and transcription based on Pensalfini (1997, 2002). Previous analyses by Nevins 2004, 2010, Kalivoda 2012

ng a rr a b aja	+/-w u rru-nu/	>	ng <u>i</u> rr <u>ibiji</u> -w u rru-nu
'tell'	3pl-DID		'they told'
	+/-j i/ NEG.IMPV	÷	ng <u>i</u> rr <u>ibiji</u> -ji 'tell NEG.IMPV'

Pensalfini's orthographic conventions: <ng> velar nasal, <rr> alveolar rhotic, <rd> coronal retroflex stop, <rn> coronal retroflex nasal, <rl> coronal retroflex lateral, <r> coronal retroflex nasal, <ld> palatal stop, <ny> palatal nasal, <ly> palatal lateral, <y> palatal glide.

Data

Height harmony in Jingulu

Further examples: Height harmony is triggered high vowels in by various suffixes

- Gender morphemes and certain tense/agreement/aspect morphemes.
- Triggering suffixes immediately follow the root.
- Pensalfini analyzes triggering suffixes as inflectional syntactic heads.

bardarda	+ /-rni/	\rightarrow	b <u>i</u> rd <u>i</u> -rni
'younger brother'	F		'younger sister'
bib a	+ /-rni/	<i>→</i>	bib <u>i</u> -rni
'son'	F		'daughter'
kuny a rrb a	+ /-rni/	>	kuny <u>i</u> rrb <u>i</u> -rni
'dog'	F		'bitch'
ng a ja	+ /-ng u rru-ju/	>	ng iji -ng u rru-ju
'see'	1.PL.INCL-DO		'we can see'
	+ /k u nyi-ju/ 2.dual-do	\rightarrow	ng iji -k u nyi-ju 'you two can see'

Height harmony in Jingulu

Underlying high root vowels:

- Do not trigger harmony in either direction (left column)
- Halt height harmony (right column)

mam a mbiy a ka 'soft'	mam a mbiy <u>i</u> k <u>i</u> -mi 'soft veg'
a nkila	a nkil <u>i</u> -rni
'cross cousin'	'female cross cousin'
ng a m u rl a	ng a m u rl <u>i</u> -rni
ʻbig'	ʻbig f'
warl a k u	warl a k u -rni
'dog'	'bitch'

Height harmony in Jingulu

Low vowels in suffixes:

- The characteristic ending for the masculine gender is /-a/
- Low suffix vowels do not trigger height assimilation, i.e. lowering

bininj-**a** bardak**u**rr-**a** 'good man м' man-м good-м

• Nor do they trigger raising, as gender suffixes with a high vowel do

jab a rrk- a	'liver м'
kiyin a rr- a	'vagina, vulva м'

Height harmony in Jingulu

Summary

- Height harmony is triggered by high vowels in certain suffixes, affecting unbounded sequences of low vowels in adjacent syllables of a preceding root.
- · Underlying high root vowels do not trigger or propagate height harmony.
- The harmony has a **phonological component**, because only high vowels are triggers.

Height harmony in Jingulu

Iterativity and locality

- Jingulu height harmony is **iterative** and **local** in the sense that it can affect unbounded sequences of vowels in contiguous syllables.
- Nevertheless, because high root vowels do not trigger or propagate harmony, the process **appears to be long-distance** rather than an iterative local process in the sense that a single suffix vowel triggers raising in all preceding vowels.

Height harmony in Jingulu

Iterativity and locality

- Jingulu height harmony is **iterative** and **local** in the sense that it can affect unbounded sequences of vowels in contiguous syllables.
- Nevertheless, because high root vowels do not trigger or propagate harmony, the process **appears to be long-distance** rather than an iterative local process in the sense that a single suffix vowel seems to be the trigger for all raised vowels.

 Local Identity enforced over vowels in adjacent syllables 	birdirdi-rni	 This study pursues an approach in which Jingulu raising harmony
Long-distanceIdentity enforced with a single vowel	birdirdi-rni	is understood in terms of local chained identity relations

15

Analysis

14

16

Aims for analysis

- Focus on phonological mechanisms that give rise to height harmony In Jingulu.
- Pursue an Agreement by Correspondence (ABC) approach

Positional licensing

- Positional licensing patterns involve an imperative that drives a licensing relation between a weak trigger and a prominent position in the word (Walker 2005, 2011, 2016, Kaplan 2008a, b, 2011, 2015).
- Jingulu height harmony can be understood as a weak trigger pattern (Kalivoda 2012).
 - Weak trigger Affixal high vowel; Licensor Root
- In the interests of focus
 - Preservation of height in the weak vowel at the cost of faithfulness in the root will not be treated here. (On approaches to weak trigger control, see Walker 2005, 2011.)
 - The morpho-syntactic issues will not be probed further.

Analysis

Analysis

Why ABC?

- Surface correspondence provides a means of enforcing agreement and disagreement among segments in an output.
- Originating studies focused on consonant harmony (Walker 2000a, b, 2001, Hansson 2001, 2010, Rose & Walker 2004).
- · Surface correspondence has since been applied to a range of phenomena
 - exx. vowel harmony, dissimilation, tone assimilation, vowel nasalization harmony, reduplication, consonant-tone interactions, restrictions on nasal-consonant sequences, among others (see Shih & Inkelas 2014).
- ABC has been expanded into analysis of vowel harmony systems, but its treatment of weak trigger patterns remains to be examined (e.g. Bowman & Lokshin 2014, Hansson 2006a, Sasa 2009, Rhodes 2012, Walker 2015, 2018, cf. Baković 2000, Krämer 2003).
- Jingulu is an interesting test case, because a single suffix vowel appears to trigger harmony in multiple preceding vowels, even at a distance.
- ABC has potential to shed light on locality and iterativity in this system.

Analysis

Basic elements of ABC

- Surface correspondence driver:
 - CORR-XX[αF] constraints enforce correspondence among segments in an output that are specified [αF] (e.g. [+vocalic] or [-son, -cont]).
- Surface identity driver:
 - IDENT-XX[F] constraints enforce identity for a feature [F] in surfacecorresponding segments.
- Faith-IO:
 - **IDENT-IO[F]** constraints enforce identity for a feature [F] in input-output correspondents.
- Agreement by correspondence occurs when constraints that drive surface correspondence and surface identity both dominate Faith-IO
 CORR-XX[αF], IDENT-IX[F] >> IDENT-IO[F]

Analysis

Locality and transitivity in ABC

- Local assessment of drivers of identity for surface correspondents (IDENT-XX[F])
 - A violation is assigned for every pair of segments that are adjacent in the surface-correspondence chain that are not identical in specification for [F] (Hansson 2006b, 2007; see also Krämer 2003).
 - Hansson argues that local evaluation of IDENT-XX avoids problematic predictions regarding majority rule effects and indeterminacy of triggers.
 - (cf. McMullin 2016, Hansson & McMullin 2019 for further discussion of long-distance dependencies in relation to ABC.)
- Surface correspondence relations are transitive (Bennett 2015b).
 - If $X_1 \mathcal{R} X_2$ and $X_2 \mathcal{R} X_3$, then $X_1 \mathcal{R} X_3$.

Analysis

Illustration

· Local evaluation of identity in surface correspondence chains

/ s z ∫ /	IDENT-XX[anterior]	Notes
a. / s _x z _x ∫ _x /	*(z ~ ∫)	All fricatives correspond with each other
b. / s _x z _y J _x /	*(s ~ ʃ)	Only [s] and [ʃ] correspond with each other

- IDENT-XX[ant] assigns violations for *chain-adjacent* pairs of segments that differ in specification for [anterior]
 - No violation for $[s_x] \sim [\int_x]$ in (a), because they are not chain-adjacent.
 - Note that because [z] corresponds with both flanking fricatives in (a), [s] ~ [J] will nonetheless correspond due to transitivity of surface correspondence.
 - In (b) $[s_x] \sim [\int_x]$ are chain adjacent, so they incur a violation.

18

Analysis

Question

- If identity for surface correspondents is enforced locally, i.e. over chain-adjacent pairs, why do low root vowels in Jingulu show iterative raising?
 - The suffix vowel will be chain-adjacent with only one root vowel.
 - And (underlying) high root vowels do not trigger raising.

Illustration

- The vowels in [bibi-rni] 'daughter' will form a correspondence chain: [ix ix ix].
- The first root vowel is chain-adjacent with the second root vowel, but not the suffix vowel.
 - The first root vowel must therefore raise by virtue of identity enforced with the second root vowel.
- But this is puzzling, because (underlying) high root vowels block harmony.

Analysis

Elaborating CORR constraints for positional licensing

- Weak trigger effects using CORR-XX[αF](Licensee, Licensor)
- Introduces potential restrictors on correspondents based in weakness (licensee) and positional strength (licensor).

CORR-XX[+vocalic]([+high]Af-Inflo, Root) Short form CORR-VV([+hi]Af, Rt)

Let X_1 be [+voc, +high] and belong to an affixal Infl₀.

Then assign a violation if there is not a surface correspondence relation between X_1 and some X_2 such that:

X₂ is [+vocalic] segment and belongs to a root.

(Infl restriction on X1 after Pensalfini 2002 and licensing proposal by Kalivoda 2012)

• This constraint can be satisfied by non-iterative or iterative height harmony in the root. In fact, harmony persists for reasons to be addressed shortly.

22

Analysis

Overview for ABC licensing approach for Jingulu

- Licensing between affix and root
 - Driven by a CORR-XX constraint
 - Can be satisfied by a single (noniterative) surface correspondence relation.
- Further constraints governing correspondence chains
 - Prohibit correspondence chains with a leftmost vowel that is neither initial nor faithful.
 - Prevent a correspondence chain that gaps across a syllable.
 - Produce the effect of iterative surface correspondence with locally enforced identity that terminates in a faithful high root vowel (a) or an initial syllable (b).

Analysis

Constraints

• CORR-VV([+hi]Af, Rt)

• Licensing imperative for raising harmony that targets a root vowel.

- IDENT-XX[high]
 - Let X_1 and X_2 be a pair of segments that are in correspondence with each other in the same output and that are chain-adjacent. If X_1 is [α high] and X_2 is [- α high], assign a violation.
- IDENT-IO[high]
 - Let X be a segment in the input and Y be a correspondent of X in the output. If X is [α high] and Y is [$-\alpha$ high], assign a violation.
- SYLLADJ-XX
 - Segments belonging to the same correspondence chain must occupy a contiguous span of syllables (Bennett 2015b).

... i_x-i_x

/ankila-mi/

a_vnki_xli_x-mi_x

/bardarda-rni/

bi_xrdi_xrdi_x-rni_x

ベト

(a)

(b)

Analysis

Observation

- Vocalic correspondence chains for height harmony in Jingulu begin with either a faithful vowel or a vowel in the stem-initial syllable.
- Both such positions could be considered stable (salient) contexts to anchor the beginning of a correspondence chain.
 - A faithful vowel is privileged because it is consistent with the stored lexical representation.
 - Initial syllables are prominent in speech planning, possibly receiving a higher level of activation (see Walker 2011 for a review).
 - Vowels in initial syllables undergo domain-initial strengthening in some languages (Barnes 2006).

Analysis

Proposal: Stable anchoring

- There is an imperative for correspondence chains to begin with a stable anchor.
- ANCHOR(XX, Stb, L) Henceforth STABLE-ANCHOR-XX-L
 - Let Stb be a set of stable anchors {IO-faithful, σ_1 } Assign a violation if the leftmost element in a surface correspondence chain is not an element of Stb, i.e. a stable anchor. (cf. ANCHOR formalism of McCarthy 2003 and CC-ANCHOR-R proposed by Bennett 2015b.)
- The set of stable anchors might vary to some extent by language, although it is expected to be limited.
- Whether left-edge faithfulness is enforced monolithically or is restricted to faithfulness for a specific feature, remains an open question.

Analysis

I

Ilustration:	Various surface	correspondence	structures for	/mamambi	yaka-mi/ 's	soft veg'
--------------	-----------------	----------------	----------------	----------	-------------	-----------

/mamambiyaka-mi/	Comments
a. $a_3 a_2 i_1 i_1 i_1 - i_1$ [mamambiyikimi]	Optimal output. Satisfies root-licensing constraint. Also satisfies STABLE- ANCHOR because leftmost V in chain '1' is faithful for [high].
b. $a_5 a_4 i_3 a_2 i_1 - i_1$ [mamambiyakimi]	Satisfies root-licensing constraint with one less IDENT-IO[high] violation than (a) but violates STABLE-ANCHOR.
c. $a_4 a_3 i_2 i_1 i_1 - i_1$ [mamambiyikimi]	Same markedness violations as (b) but with one more IDENT-IO[high] violation.
d. $i_1 i_1 i_1 i_1 i_1 = i_1$ [mimimbiyikimi]	Ties with (a) in satisfying root-licensing constraint and STABLE-ANCHOR (here, leftmost V in chain '1' is initial) but with two more IDENT-IO[high] violations.
e. $a_5 a_4 i_1 a_3 a_2 - i_1$ [mamambiyakami]	Ties with (a) in satisfying root-licensing constraint and STABLE-ANCHOR. Earns two less IDENT-IO[high] violations but violates SYLLADJ-XX.
f. $a_6 a_5 i_4 a_3 a_2 - i_1$ [mamambiyakami]	Violates root-licensing constraint because affix vowel has no surface correspondent in the root.

Analysis

Ranking preview

Height harmony progresses locally to an underlying high root V or σ_1

Corr-VV([+hi]af, Rt) Ident-XX[high] SyllAdj-XX

STABLE-ANCHOR-XX-L

Height harmony operates to a vowel in the root

IDENT-IO[high]

• Root licensing activates STABLE-ANCHOR-XX-L

- When root licensing causes a root-final vowel to be unfaithful, **STABLE-ANCHOR** drives extension of the correspondence chain to a stable anchor.
- High root vowels are *icy targets* (Jurgec 2011a, b)
 - An icy target participates in harmony but "freezes" propagation beyond it.
 - Emerges here as the effect of the left anchoring constraint.

26

Comments	/mamambiyaka-mi/	Corr-VV ([+hi]Af, Rt)	IDENT-XX [high]	SyllAdj -XX	STABLE-ANCHOR -XX-L	Ident-IO [high]
Harmony up to and including root /i/	a. \rightarrow a ₃ a ₂ i ₁ i ₁ i ₁ - i ₁ [mamambiyikimi]					**
Harmony to root-final /a/	b. $a_5 a_4 i_3 a_2 i_1 - i_1$ [mamambiyakimi]				*! W	* L
Harmony up to vowel before root /i/	c. $a_4 a_3 i_2 i_1 i_1 - i_1$ [mamambiyikimi]				*! W	**
Harmony to initial /a/, through root /i/	d. $i_1 i_1 i_1 i_1 i_1 - i_1$ [mimimbiyikimi]					***!* W
Harmony with root /i/ only	e. $a_5 a_4 i_1 a_3 a_2 - i_1$ [mamambiyakami]			*! W		L
No harmony	f. $a_6 a_5 i_4 a_3 a_2 - i_1$ [mamambiyakami]	*! W				L
Height identity not enforced in corresponding Vs	g. a ₆ a₅ i₁ a₁ a₁ − i₁ [mamambiy a k a mi]		*!* W (i~a, a~i)			L 30

Analysis: Height harmony in a root with an underlying high vowel (iterative to icy target)

Analysis: Height harmony in a root with no underlying high vowel (iterative)

Comments	/bardarda-rni/	CORR-VV ([+hi]Af, Rt)	IDENT-XX [high]	SyllAdj -XX	STABLE-ANCHOR -XX-L	IDENT-IO [high]
Harmony fully throughout root	$\begin{array}{c} a. \rightarrow i_1 i_1 i_1 - i_1 \\ [birdirdirni] \end{array}$					***
Harmony to root-final /a/ only	b. $a_3 a_2 i_1 - i_1$ [bardardirni]				*! W	* L
Harmony up to root- medial /a/	C. $a_3 i_1 i_1 - i_1$ [bardirdirni]				*! W	**L
Harmony with root- initial /a/ only	d. $i_1 a_3 a_2 - i_1$ [birdardarni]			*! W		* L
No harmony	e. $a_4 a_3 a_2 - i_1$ [bardardarni]	*! W				L
Height identity not enforced in corresponding Vs	f. a ₁ a ₁ a ₁ - i ₁ [bardardarni]		*! W (a ~ i)			L

Analysis: Height harmony in a root with a final underlying high vowel (non-iterative)

Comments	/warlaku-rni/	CORR-VV ([+hi]Af, Rt)	IDENT-XX [high]	SyllAdj- XX	STABLE-ANCHOR -XX-L	IDENT-IO [high]
Harmony to root-final /u/	a. \rightarrow a ₃ a ₂ u ₁ - i ₁ [warlak u rn i]					
No harmony	b. $a_4 a_3 u_2 - i_1$ [warlakurni]	*! W				
Harmony through /u/ to initial /a/	c. $i_1 i_1 u_1 - i_1$ [wirlikurni]					*!* W

Analysis

Summary

- On this account, Jingulu height harmony is understood as driven by a positional licensing imperative such that
 - Agreement by Correspondence is strictly enforced between a [+high] suffix vowel and a root vowel.
 - Raising of a root-final vowel activates a stable anchoring constraint governing a correspondence chain, requiring a faithful or initial leftmost element.
 - Result:

32

- Harmony operates to an underlying high vowel.
- If an underlying high root vowel is not reached, harmony operates to the initial syllable.
- In the correspondence chain, there are no gaps across syllables and identity for [high] is assessed locally over chain-adjacent vowels.

Alternatives

Alternative: Relational correspondence

Relational correspondence

- Preservation of plateau or contour relations between input values for segmental features and tones via *contour correspondence constraints* (Steriade 2012).
- Example of a contour correspondence constraint:

CONTOURCORR-IO(height, plateau)

If two vowels in contiguous syllables have identical values for height in the input, those vowels have height values that are identical to each other in the output.

Prediction

34

36

• Plateau preservation predicts across-the-board shifts in height for a sequence of vowels with the same height in the input.

Alternative: Relational correspondence

Applied to Jingulu height harmony

- A root-licensing constraint for [+high] would minimally compel raising in a rootfinal vowel.
- To preserve a plateau, CONTOURCORR-IO(height, plateau) would drive raising of the maximal contiguous sequence of underlying low vowels that contains the raised vowel (cf. Kalivoda 2012 on FAITH-SHARE).

Alternative: Relational correspondence

Comparison with ABC

- Relational correspondence (RC) employs a more powerful evaluation of identity than ABC.
 - ABC evaluates identity between segmental pairs in IO and XX correspondence.
 - RC additionally examines sequences in the input, and it compares the identity of relations across input and output sequences.

ABC identit	y evaluations	RC identity evaluations			
Input	aa tt	Input	a ⇔ a t t		
Output	$i_x \leftrightarrow i_x$	Output	$i_x \leftrightarrow i_x$		
Ident-IO Ident-XX	a∼i,a∼i i∼i	IDENT-IO RC-identity	a ~ i, a ~ i (a ~ a) _I ~ (i ~ i) ₀		

Alternative: Needy root vowels

- Root vowels that potentially raise are lexically marked as requiring harmony for [high]; non-alternating root vowels are lexically [+high].
- A morphological condition restricts the harmony source to a non-root.
- If a needy V fails to find a source, it is assigned default [-high] (Nevins 2004, 2010).

ABC Licensing approach	Needy root vowels
Dependency operates from suffix vowel to root	Dependency operates from root vowels to suffix
Harmony is enforced via over chain-adjacent vowels over a contiguous span of syllables	Harmony is enforced iteratively from the leftmost (furthest) harmonizing root vowel to the suffix vowel
High vowels are icy targets – they terminate harmony because of their status as faithful	High vowels block harmony through defective intervention – they do not meet the morphological condition on a harmony source
Single input-output derivational step	Serial derivation

Conclusion

Conclusion

Jingulu height harmony

• A harmony pattern intersecting with several interesting issues, including locality, iterativity, triggering, and the nature of participation by blockers.

Some take-aways from the proposed account

- A weak trigger analysis implemented within an ABC approach.
- An imperative for [+high] vowels in certain affixes to be licensed by correspondence with the root drives minimal (non-iterative) harmony to the root-final vowel.
- Root-licensing can disrupt a stable left-anchor for a correspondence chain, which drives height harmony to persist until it reaches a faithful high vowel or an initial vowel.
- Even though the weak trigger is not adjacent to all harmonizing vowels, identity is assessed strictly over chain-adjacent vowel pairs.

Further research

Positional licensing in an ABC approach

- The suitability of an ABC approach to positional licensing remains to be explored further.
- Positional licensing phenomena depart from patterns that are classically analyzed using ABC because they are not usually characterized as similarity sensitive.
- In an ABC treatment of positional licensing, it is the licensee/licensor pairing that gives rise to surface correspondence.

Anchoring

• In another vein, further work is need to pursue the implications of edgeanchoring constraints on surface correspondence chains.

38

References

Baković, Eric. 2000. Harmony, Dominance and Control. PhD dissertation, Rutgers University.

- Barnes, Jonathan. 2006. *Strength and Weakness at the Interface: Phonological Neutralization in Phonetics and Phonology*. Berlin: Mouton de Gryuter.
- Bennett, William G. 2013. *Dissimilation, Consonant Harmony, and Surface Correspondence*. PhD dissertation, Rutgers University.
- Bennett, William G. 2015a. Assimilation, dissimilation, and surface correspondence in Sundanese. *Natural Language & Linguistic Theory* 33, 371–415.
- Bennett, William G. 2015b. The Phonology of Consonants. Cambridge: Cambridge University Press.
- Bowman, Samuel R. & Benjamin Lokshin. 2014. Idiosyncratically transparent vowels in Kazakh. *Proceedings of the Annual Meeting on Phonology 2013*.
- Hansson, Gunnar Ó. 2001. *Theoretical and Typological Issues in Consonant Harmony*. PhD Dissertation, UC Berkeley.
- Hansson, Gunnar. Ó. 2006a. Locality and similarity in phonological agreement. Paper presented at the PhonologyFest Workshop, Indiana University, Bloomington, June 23, 2006.
- Hansson, Gunnar Ó. 2006b. Understanding harmony as agreement. Paper presented at the annual meeting of the Linguistic Society of America, Albuquerque, NM, January 5-8 2006.
- Hansson, Gunnar Ó. 2007. Blocking effects in agreement by correspondence. LI 38, 395-409.
- Hansson, Gunnar Ó. 2010. *Consonant Harmony: Long-Distance Interaction in Phonology*. Berkeley: University of California Press.
- Jurgec, Peter. 2011a. Feature Spreading 2.0: A Unified Theory of Assimilation. PhD dissertation, University of Tromsø.
- Jurgec, Peter. 2011b. Icy targets. Ms., Meertens Instituut.
- Kalivoda, Nick. 2012. Jingulu vowel harmony as weak-trigger licensing. UGA Working Papers in Linguistics 1.
- Kaplan, Aaron. 2008a. Noniterativity is an Emergent Property of Grammar. PhD dissertation, University of California, Santa Cruz.
- Kaplan, Aaron. 2008a. Licensing and noniterative harmony in Lango. NELS 37, 311–322.
- Kaplan, Aaron. 2011. Gradualness and harmonic improvement without candidate chains in Chamorro. *Linguistic Inquiry* 42, 631–650.
- Kaplan, Aaron. 2015. Maximal prominence and a theory of possible licensors. *Natural Language and Linguistic Theory* 33, 1235-1270.
- Krämer, Martin. 2003. Vowel Harmony and Correspondence Theory. Berlin: Mouton de Gruyter.
- McCarthy, John J. 2003. OT constraints are categorical. *Phonology* 20, 75–138.
- McMullin, Kevin. 2016. *Tier-based locality in Long-distance Phonotactics: Learnability and Typology*. PhD dissertation, University of California, Berkeley.
- McMullin, Kevin &, Gunnar Ó Hansson. 2019. Inductive learning of locality relations in segmental phonology. Laboratory Phonology: Journal of the Association for Laboratory Phonology 10(1), 14, 1–53.
- Nevins, Andrew. 2004. Conditions on (Dis)Harmony. PhD dissertation, MIT.
- Nevins, Andrew. 2010. Locality in Vowel Harmony. Cambridge, MA: MIT Press.
- Pensalfini, Robert. 1997. Jingulu Grammar, Dictionary, and Texts. PhD dissertation, MIT.
- Pensalfini, Robert. 2002. Vowel harmony in Jingulu. Lingua 112, 561-586.
- Rhodes, Russell. 2012. Vowel harmony as Agreement by Correspondence. UC Berkeley Phonology Lab Annual Report, 138–168. University of California, Berkeley.
- Rose, Sharon & Rachel Walker. 2004. A typology of consonant agreement as correspondence. *Language* 80, 475–531.
- Sasa, Tomomasa. 2009. *Treatments of Vowel Harmony in Optimality Theory*. PhD dissertation, University of Iowa.
- Shih, Stephanie S. & Sharon Inkelas (eds). 2014. Agreement by correspondence archive & bibliography. <u>http://linguistics.berkeley.edu/phonlab/annual_report/documents/2014</u> /annual_report_2014_ABCC.html
- Steriade, Donca, 2012. Contour correspondence: Tonal and segmental evidence. Paper presented at Universitat Autònoma de Barcelona, March 20, 2012.
- Walker, Rachel. 2000a. Long-distance consonantal identity effects. WCCFL 19, 532-545.

Walker, Rachel. 2000b. Yaka nasal harmony: Spreading or segmental correspondence? *BLS 26*, 321–332.

- Walker, Rachel. 2001. Consonantal correspondence. In R. Kirchner, J. Pater & W. Wikeley, eds., Proceedings of the Workshop on the Lexicon in Phonetics and Phonology, 73-84. Papers in Experimental and Theoretical Linguistics 6. University of Alberta, Department of Linguistics.
- Walker, Rachel. 2005. Weak triggers in vowel harmony. *Natural Language and Linguistic Theory* 23, 917–989.
- Walker, Rachel. 2010. One-to-many relations. Presentation at the Manchester Phonology Meeting, May 20-22, 2010, University of Manchester, UK.
- Walker, Rachel. 2011. Vowel Patterns in Language. Cambridge, UK: Cambridge University Press.
- Walker, Rachel. 2015. Surface correspondence and discrete harmony triggers. *Proceedings of the Annual Meeting in Phonology 2014.*
- Walker, Rachel. 2016. Positional prominence and consonantal interactions in metaphony and post-tonic harmony. In Francesc Torres-Tamarit, Kathrin Linke & Marc van Oostendorp, eds. Approaches to Metaphony in the Languages of Italy, 301–332. Berlin: de Gruyter.
- Walker, Rachel. 2018. Feature identity and icy targets in Menominee vowel harmony. Hana-bana: A Festschrift for Junko Itô and Armin Mester, ed. by Ryan Bennett, Andrew Angeles, Adrian Brasoveanu, Dhyana Buckley, Shigeto Kawahara, Grant McGuire & Jaye Padgett. Department of Linguistics, University of California, Santa Cruz. <u>https://itomestercelebration.sites.ucsc.edu/</u>